The file containing the source code shown below is located in the corresponding directory in <sdk>/samples/android-<version>/...
/* * Copyright (C) 2011 The Android开源工程 * * Licensed under the Apache License, Version 2.0 (the "License"); you may not * use this file except in compliance with the License. You may obtain a copy of * the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations under * the License. */ package com.example.android.ttsengine; import android.content.Context; import android.content.SharedPreferences; import android.media.AudioFormat; import android.speech.tts.SynthesisCallback; import android.speech.tts.SynthesisRequest; import android.speech.tts.TextToSpeech; import android.speech.tts.TextToSpeechService; import android.util.Log; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.nio.ByteBuffer; import java.nio.ByteOrder; import java.util.HashMap; import java.util.Map; /** * A text to speech engine that generates "speech" that a robot might understand. * The engine supports two different "languages", each with their own frequency * mappings. * * It exercises all aspects of the Text to speech engine API * {@link android.speech.tts.TextToSpeechService}. */ public class RobotSpeakTtsService extends TextToSpeechService { private static final String TAG = "ExampleTtsService"; /* * This is the sampling rate of our output audio. This engine outputs * audio at 16khz 16bits per sample PCM audio. */ private static final int SAMPLING_RATE_HZ = 16000; /* * We multiply by a factor of two since each sample contains 16 bits (2 bytes). */ private final byte[] mAudioBuffer = new byte[SAMPLING_RATE_HZ * 2]; private Map<Character, Integer> mFrequenciesMap; private volatile String[] mCurrentLanguage = null; private volatile boolean mStopRequested = false; private SharedPreferences mSharedPrefs = null; @Override public void onCreate() { super.onCreate(); mSharedPrefs = getSharedPreferences(GeneralSettingsFragment.SHARED_PREFS_NAME, Context.MODE_PRIVATE); // We load the default language when we start up. This isn't strictly // required though, it can always be loaded lazily on the first call to // onLoadLanguage or onSynthesizeText. This a tradeoff between memory usage // and the latency of the first call. onLoadLanguage("eng", "usa", ""); } @Override public void onDestroy() { super.onDestroy(); } @Override protected String[] onGetLanguage() { // Note that mCurrentLanguage is volatile because this can be called from // multiple threads. return mCurrentLanguage; } @Override protected int onIsLanguageAvailable(String lang, String country, String variant) { // The robot speak synthesizer supports only english. if ("eng".equals(lang)) { // We support two specific robot languages, the british robot language // and the american robot language. if ("USA".equals(country) || "GBR".equals(country)) { // If the engine supported a specific variant, we would have // something like. // // if ("android".equals(variant)) { // return TextToSpeech.LANG_COUNTRY_VAR_AVAILABLE; // } return TextToSpeech.LANG_COUNTRY_AVAILABLE; } // We support the language, but not the country. return TextToSpeech.LANG_AVAILABLE; } return TextToSpeech.LANG_NOT_SUPPORTED; } /* * Note that this method is synchronized, as is onSynthesizeText because * onLoadLanguage can be called from multiple threads (while onSynthesizeText * is always called from a single thread only). */ @Override protected synchronized int onLoadLanguage(String lang, String country, String variant) { final int isLanguageAvailable = onIsLanguageAvailable(lang, country, variant); if (isLanguageAvailable == TextToSpeech.LANG_NOT_SUPPORTED) { return isLanguageAvailable; } String loadCountry = country; if (isLanguageAvailable == TextToSpeech.LANG_AVAILABLE) { loadCountry = "USA"; } // If we've already loaded the requested language, we can return early. if (mCurrentLanguage != null) { if (mCurrentLanguage[0].equals(lang) && mCurrentLanguage[1].equals(country)) { return isLanguageAvailable; } } Map<Character, Integer> newFrequenciesMap = null; try { InputStream file = getAssets().open(lang + "-" + loadCountry + ".freq"); newFrequenciesMap = buildFrequencyMap(file); file.close(); } catch (IOException e) { Log.e(TAG, "Error loading data for : " + lang + "-" + country); } mFrequenciesMap = newFrequenciesMap; mCurrentLanguage = new String[] { lang, loadCountry, ""}; return isLanguageAvailable; } @Override protected void onStop() { mStopRequested = true; } @Override protected synchronized void onSynthesizeText(SynthesisRequest request, SynthesisCallback callback) { // Note that we call onLoadLanguage here since there is no guarantee // that there would have been a prior call to this function. int load = onLoadLanguage(request.getLanguage(), request.getCountry(), request.getVariant()); // We might get requests for a language we don't support - in which case // we error out early before wasting too much time. if (load == TextToSpeech.LANG_NOT_SUPPORTED) { callback.error(); return; } // At this point, we have loaded the language we need for synthesis and // it is guaranteed that we support it so we proceed with synthesis. // We denote that we are ready to start sending audio across to the // framework. We use a fixed sampling rate (16khz), and send data across // in 16bit PCM mono. callback.start(SAMPLING_RATE_HZ, AudioFormat.ENCODING_PCM_16BIT, 1 /* Number of channels. */); // We then scan through each character of the request string and // generate audio for it. final String text = request.getText().toLowerCase(); for (int i = 0; i < text.length(); ++i) { char value = normalize(text.charAt(i)); // It is crucial to call either of callback.error() or callback.done() to ensure // that audio / other resources are released as soon as possible. if (!generateOneSecondOfAudio(value, callback)) { callback.error(); return; } } // Alright, we're done with our synthesis - yay! callback.done(); } /* * Normalizes a given character to the range 'a' - 'z' (inclusive). Our * frequency mappings contain frequencies for each of these characters. */ private static char normalize(char input) { if (input == ' ') { return input; } if (input < 'a') { return 'a'; } if (input > 'z') { return 'z'; } return input; } private Map<Character, Integer> buildFrequencyMap(InputStream is) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(is)); String line = null; Map<Character, Integer> map = new HashMap<Character, Integer>(); try { while ((line = br.readLine()) != null) { String[] parts = line.split(":"); if (parts.length != 2) { throw new IOException("Invalid line encountered: " + line); } map.put(parts[0].charAt(0), Integer.parseInt(parts[1])); } map.put(' ', 0); return map; } finally { is.close(); } } private boolean generateOneSecondOfAudio(char alphabet, SynthesisCallback cb) { ByteBuffer buffer = ByteBuffer.wrap(mAudioBuffer).order(ByteOrder.LITTLE_ENDIAN); // Someone called onStop, end the current synthesis and return. // The mStopRequested variable will be reset at the beginning of the // next synthesis. // // In general, a call to onStop( ) should make a best effort attempt // to stop all processing for the *current* onSynthesizeText request (if // one is active). if (mStopRequested) { return false; } if (mFrequenciesMap == null || !mFrequenciesMap.containsKey(alphabet)) { return false; } final int frequency = mFrequenciesMap.get(alphabet); if (frequency > 0) { // This is the wavelength in samples. The frequency is chosen so that the // waveLength is always a multiple of two and frequency divides the // SAMPLING_RATE exactly. final int waveLength = SAMPLING_RATE_HZ / frequency; final int times = SAMPLING_RATE_HZ / waveLength; for (int j = 0; j < times; ++j) { // For a square curve, half of the values will be at Short.MIN_VALUE // and the other half will be Short.MAX_VALUE. for (int i = 0; i < waveLength / 2; ++i) { buffer.putShort((short)(getAmplitude() * -1)); } for (int i = 0; i < waveLength / 2; ++i) { buffer.putShort(getAmplitude()); } } } else { // Play a second of silence. for (int i = 0; i < mAudioBuffer.length / 2; ++i) { buffer.putShort((short) 0); } } // Get the maximum allowed size of data we can send across in audioAvailable. final int maxBufferSize = cb.getMaxBufferSize(); int offset = 0; while (offset < mAudioBuffer.length) { int bytesToWrite = Math.min(maxBufferSize, mAudioBuffer.length - offset); cb.audioAvailable(mAudioBuffer, offset, bytesToWrite); offset += bytesToWrite; } return true; } private short getAmplitude() { boolean whisper = mSharedPrefs.getBoolean(GeneralSettingsFragment.WHISPER_KEY, false); return (short) (whisper ? 2048 : 8192); } }